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Maxwell and Cole (2007) showed that cross-sectional approaches to mediation

typically generate substantially biased estimates of longitudinal parameters in

the special case of complete mediation. However, their results did not apply to

the more typical case of partial mediation. We extend their previous work by

showing that substantial bias can also occur with partial mediation. In particular,

cross-sectional analyses can imply the existence of a substantial indirect effect

even when the true longitudinal indirect effect is zero. Thus, a variable that

is found to be a strong mediator in a cross-sectional analysis may not be a

mediator at all in a longitudinal analysis. In addition, we show that very different

combinations of longitudinal parameter values can lead to essentially identical

cross-sectional correlations, raising serious questions about the interpretability

of cross-sectional mediation data. More generally, researchers are encouraged to

consider a wide variety of possible mediation models beyond simple cross-sectional

models, including but not restricted to autoregressive models of change.
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BIAS IN CROSS-SECTIONAL ANALYSES 817

Mediation is a fundamental concept in many areas of psychology and other

sciences because of its importance in addressing questions about causal mech-

anisms. In experimental as well as observational studies, investigators typically

want to understand the intervening processes whereby some variable X causes

some other variable Y . Over the past several decades, most empirical tests of

mediation have been based on cross-sectional data and have involved methods

initially developed by Kenny (1979) and described in more detail by Baron and

Kenny (1986). More recently, these methods have been expanded by numerous

authors (e.g., Kenny, Kashy, & Bolger, 1998; MacKinnon, 2008; MacKinnon,

Fairchild, & Fritz, 2007; MacKinnon, Lockwood, Hoffman, West, & Sheets,

2002; Preacher & Hayes, 2004; Shadish, Cook, & Campbell, 2002; Shrout &

Bolger, 2002).

Most original presentations of methods for studying mediation did not ex-

plicitly consider the role of time despite the fact that mediational processes

necessarily develop over time. Interestingly, a clear counterexample was one of

the earliest papers devoted specifically to mediation, namely that of Judd and

Kenny (1981). They described the potential importance of longitudinal designs

for studying mediation, and emphasized the bias that could occur from failing to

control for prior assessments of the mediator and the outcome variable. However,

their cautions were largely ignored not only by substantive researchers but also

by methodologists. As a result, most substantive studies of mediation are based

on cross-sectional data. For example, Maxwell and Cole’s (2007) survey of

the five American Psychological Association (APA) journals publishing the

most articles studying mediation revealed that over half of the studies tested

mediation with methods that did not allow time for an independent variable

to have an effect on a dependent variable. After nearly 20 years of largely

neglecting the role of time for studying mediation, methodological articles

began to appear in the late 1990s, with authors arguing that because mediation

invariably occurs over time, empirical investigations of mediation should take

time into account (e.g., Cole & Maxwell, 2003; Collins, Graham, & Flaherty,

1998; Kenny, Korchmaros, & Bolger, 2003; Kraemer, Stice, Kazdin, & Kupfer,

2001; MacCallum & Austin, 2000; Maxwell & Cole, 2007; Tein, Sandler,

MacKinnon, & Wolchik, 2004). Much of this work is an outgrowth of an

earlier body of research by Gollob and Reichardt (1985, 1987, 1991), who

emphasized the importance of time in the formation and interpretation of struc-

tural equation models (SEM). Another major impetus for this perspective comes

from the MacArthur approach to mediation, which emphasizes the necessity of

incorporating time into the study of mediation. For example, Kraemer, Kiernan,

Essex, and Kupfer (2008) stated “Perhaps the most important implication of

the MacArthur approach is the necessity of using longitudinal studies with at

least two and usually three time points to establish moderators and mediators”

(p. S106).

D
ow

nl
oa

de
d 

by
 [

G
eo

rg
e 

M
as

on
 U

ni
ve

rs
ity

] 
at

 1
7:

07
 2

1 
M

ay
 2

01
6 



818 MAXWELL, COLE, MITCHELL

Despite recent methodological work arguing for longitudinal designs to study

mediation, most substantive investigations of mediation continue to be based on

cross-sectional designs. One reason for this apparent inconsistency is that only

recently has work begun to examine the problems associated with using cross-

sectional designs to study mediation. In particular, Maxwell and Cole (2007)

showed mathematically that under certain conditions, cross-sectional designs

almost always fail to capture true mediational processes. More specifically, they

showed that a cross-sectional analysis typically suggests that M does not fully

mediate the relation when in fact it does from a longitudinal perspective. A

limitation of Maxwell and Cole’s (2007) work, however, is that it focused only

on complete mediation. In other words, they began with a longitudinal model

where some variable M fully mediated the relation between a presumed cause

X and a presumed effect Y . Our overarching goal in the present study was to

address this limitation.

In most psychological research, complete mediation is rare because of the

difficulty of identifying all possible mediators of complex psychological rela-

tions. In reality, any given variable M likely only partially mediates the relation

between X and Y . Maxwell and Cole (2007) did not consider a situation where

M is only a partial mediator. The accuracy of a cross-sectional design for

studying partial mediation remains unclear. The main goal of the present paper

was to extend the earlier work of Maxwell and Cole (2007) by examining the

extent to which cross-sectional designs can be relied on to provide an accurate

indication of the extent to which some variable M either partially or completely

mediates the relation between two other variables, X and Y .

A fundamental fact sometimes overlooked about mediation is that it ultimately

involves questions about causation. To what extent does X cause M ? Does X

also directly cause Y ? Or are X and Y related solely because X causes M ,

which in turn causes Y ? Conceptualizing mediation in terms of causality opens

a variety of ways of investigating mediation. One method (and the focus of

the present paper) involves an autoregressive framework. Our autoregressive

method is a special type of SEM. We chose this focus for several reasons:

(a) the popular Baron and Kenny (1986) approach relies on an SEM formulation;

(b) an autoregressive model represents the most straightforward way to extend

Baron and Kenny’s approach to a longitudinal framework and thus may provide

the best opportunity for cross-sectional analyses to be accurate; (c) SEM has

a long tradition in psychology and the other social sciences; (d) authors such

as Pearl (2009) and Mulaik (2009) have shown that under specified conditions,

SEM can provide a rigorous basis for causal inference, thus making it potentially

appropriate for assessing mediation; and (e) Pearl (2011) showed that a Structural

Causal Model framework can under certain circumstances lead to a situation

where standard SEM formulas provide appropriate definitions of direct and

indirect effects from a causal perspective.
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BIAS IN CROSS-SECTIONAL ANALYSES 819

Nevertheless, it is important to realize that SEM constitutes only one possible

model for causation, and hence only one of many models for mediation. In

particular, Rubin’s causal model (Rubin, 1974; see also Shadish, 2010; West &

Thoemmes, 2010) provides an alternative framework that has led to valuable

insights about alternative approaches for studying causation in general and

mediation in particular. Frangakis and Rubin’s (2002) principal stratification

(PS) approach offers an alternative framework to SEM for studying mediation.

Jo (2008) described connections between the PS and SEM approaches to me-

diation, and proposed a cross-translation approach, which allows parameters

to be translated back and forth between the PS and SEM models. Jo pointed

out that the practical difference between PS and SEM derives from different

identifying assumptions; thus, each approach has its strengths and weaknesses.

Of particular relevance for our purposes was that the PS approach typically

invokes an exclusion restriction, which implies the absence of a direct effect

of X on Y . As Imai, Keele, and Tingley (2010) pointed out, this assump-

tion makes this approach “less than ideal for the causal mediation analysis

used in social science research” (p. 314). They presented an alternative frame-

work for mediation that included SEM as a special case, thus providing a

viable approach that in general requires fewer assumptions than are implicit

in SEM.

We also want to acknowledge the existence of other longitudinal models for

studying mediation. For example, much attention has been devoted to studying

mediation at the level of the individual, as can be done in multilevel modeling

and latent growth curve frameworks (e.g., Bauer, Preacher, & Gil, 2006; Kenny

et al., 2003; Raykov & Mels, 2007; Selig & Preacher, 2009). Not only may

there be important advantages to studying mediation as a within-person process

instead of as a between-person process, but multilevel and growth curve models

can often allow for individual differences in meditational parameters, unlike the

approach we developed here. McArdle (2009) provided an excellent review of

a variety of latent variable models for studying change.

In summary, we chose an autoregressive SEM model to serve as the basis

for our examination of possible bias in typical cross-sectional designs. We want

to emphasize that our reason was not necessarily because SEM is always the

best way to study mediation. Instead, we made this choice largely because

of the historical precedence and popularity of this model, the fact that under

certain conditions a formal causal framework shows that SEM provides an

appropriate method for assessing causal mediation parameters, and the fact

that it is conceptually more similar to typical cross-sectional SEM models

than are other alternative mediation models, so it seemed likely that a cross-

sectional analysis might fare better for an underlying autoregressive SEM model

than for other more complex models. From this perspective, our intent is to

give traditional cross-sectional analyses as much opportunity as possible to be
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820 MAXWELL, COLE, MITCHELL

successful. Our belief that cross-sectional analyses would fare worse for other

types of models is only conjectural, and awaits additional research.

EXAMPLE

Suppose a developmental psychopathologist wants to understand why depressed

mothers tend to have depressed children. One possible explanation is that de-

pressed mothers may engage in problematic parenting behaviors, which in turn

leads to depression in their children. Of course, problematic parenting may

reflect only one of several mechanisms whereby depression in parents leads to

depression in children, in which case parenting would only partially mediate the

relation between maternal depression and child depression.

Further suppose that this developmental psychopathologist designs a study to

investigate the extent to which parenting mediates the relation between maternal

depression and child depression. Following the general norm, we assumed that

data are collected in a cross-sectional design. The standard mediation analysis

for a simple cross-sectional design depends on the three bivariate correlations

between each pair of maternal depression (which we labeled X), parenting

(which we labeled M ), and child depression (which we labeled Y ). For sim-

plicity, we assumed that correlations can be found for latent variables, so as

to avoid distortions due to measurement error. As an example to motivate our

presentation, we assumed that the following correlations are observed in a large

sample: (a) the correlation between maternal depression and parenting is .512,

(b) the correlation between parenting and child depression is .481, (c) and the

correlation between maternal depression and child depression is .247.

The standard mediation analysis as described by Baron and Kenny (1986)

proceeds with a series of regression analyses. First, the mediator (i.e., parenting)

is regressed on the independent variable (i.e., maternal depression). The ensuing

standardized regression coefficient simply equals the XM correlation. The value

of .512 in our example would be statistically significant even with a moderate

sample size. Second, the dependent variable (i.e., child depression) is regressed

on the independent variable. Although the corresponding correlation is smaller

in our data than the correlation between maternal depression and parenting, it

would still be statistically significant at the .05 level with a sample size of 65

or larger. Third, the dependent variable is regressed on the independent variable

and the mediator. For our data, this analysis yields a standardized regression

weight of .48 for parenting and a standardized regression weight of .00 (to two

decimal places) for maternal depression.

The standard cross-sectional mediation analysis reveals that there is no direct

effect of maternal depression on child depression once parenting has been taken

into account. Thus, this analysis appears to confirm that parenting mediates the
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BIAS IN CROSS-SECTIONAL ANALYSES 821

relation between maternal depression and child depression. In fact, the analysis

leads to a conclusion that parenting completely mediates the relation because

maternal depression is no longer related to child depression after controlling

for parenting. Such a conclusion appears to be of obvious scientific importance

because it suggests that the mechanism has been discovered whereby maternal

depression leads to child depression.

The results in this example would appear to be straightforward and clear.

Later in this paper, however, we show that this apparent conclusion can be

dramatically incorrect. These cross-sectional correlations are entirely consistent

with a longitudinal model of mediation where the true relations are very different.

In fact, these correlations are consistent with a longitudinal model in which

parenting has no mediational effect whatsoever on the relation between maternal

depression and child depression. In this longitudinal model, the entire relation

between maternal depression and child depression is due to a direct effect of

maternal depression on child depression. In addition, parenting has no effect on

child depression in this model. Alarmingly, the cross-sectional analysis suggests

exactly the opposite conclusion. The analysis could be further refined by using

such methods as bootstrapping and Prodclin to form confidence intervals and

statistical tests of the indirect effect (MacKinnon, 2008; Preacher & Hayes,

2004, 2008; Shrout & Bolger, 2002), but such intervals and tests are likely to be

inaccurate if the underlying estimate itself is biased, so our emphasis throughout

this article is on bias.

Maxwell and Cole (2007) focused on the problems that arise from using

cross-sectional methods to estimate longitudinal mediation under the special

condition when M completely mediates the longitudinal X-Y relation. In the

present study we extended this work in two important ways. Our first goal was

to examine what happens in the more frequent case of partial mediation. Our

second goal was to consider situations in which M is not really a longitudinal

mediator at all; in such cases, can a cross-sectional analysis spuriously suggest

that M is a mediator?

MEDIATION FROM TWO AUTOREGRESSIVE

PERSPECTIVES ON CHANGE

We considered mediation from two autoregressive models, depicted in Figures 1

and 2. In Model 1 (Figure 1) all cross-lag paths occur over one unit of time.

To the extent that the path from X at time t to M at time t C 1 is nonzero

and the path from M at time t C 1 to Y at time t C 2 is also nonzero, M

mediates the effect of X on Y . The direct effect of X on Y is reflected by the

path coefficient c. Unlike Maxwell and Cole, we allowed for the possibility of

direct and indirect effects of X on Y over time.
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822 MAXWELL, COLE, MITCHELL

FIGURE 1 Longitudinal mediation model with one unit lag for direct effect of X on Y

(Model 1).

The path diagram in Figure 1 can be written more formally in terms of the

following equations:

Mi tC1 D mMi t C aXi t C ©MitC1 (1)

Yi tC1 D yYi t C bMi t C cXi t C ©Y itC1 (2)

FIGURE 2 Longitudinal mediation model with two unit lag for direct effect of X on Y

(Model 2).
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BIAS IN CROSS-SECTIONAL ANALYSES 823

where Mi tC1 is the score for individual i on variable M at time t C 1, Mi t is

the score for individual i on variable M at the previous time point t , Xi t is

the score for individual i on variable X at time t , and ©MitC1 is an error term

reflecting other influences on M .

We assumed throughout that X , M , and Y at each time point have been

standardized, which is why there is no intercept term in Equations (1) and

(2). This also implies that m, a, b, y, and c are standardized coefficients.

We also assumed throughout that all variables were latent variables or more

generally variables measured without error. This provides a best-case assumption

to evaluate the extent to which cross-sectional analyses can accurately recover

parameters of longitudinal models. For simplicity, we also assumed that all

parameter values were nonnegative.

The distinctive feature of Model 1 and Equation (2), as compared to Maxwell

and Cole (2007), is the addition of a direct effect of X on Y . The time lag

whereby X directly causes Y is the same as the lag whereby X causes M , and

M in turn causes Y . Although this seems reasonable, it may also be important to

consider a second perspective. According to Figure 1 and Equations (1) and (2),

the indirect effect of X on Y takes two units of time, one for X to influence M

and another for M to influence Y . If the indirect effect takes two units of time,

an argument could be made for expecting the direct effect to take two units as

well. This argument justifies Model 2 (see Figure 2). Model 2 assumes that the

direct effect of X on Y takes two units of time. In the algebraic representation

of this model, Equation (2) is replaced by Equation (3):

Yi tC2 D yYi tC1 C bMi tC1 C cXi t C ©Y itC2 (3)

In neither model do we make any assumptions about the absolute length of a

unit of time. All that distinguishes Model 1 from Model 2 is the relative amount

of time over which X directly affects Y .

The question of how best to consider time lags is clearly an unresolved issue

in psychological research (Cole & Maxwell, 2009). In fact, one perspective

offered by Gollob and Reichardt (1987) is that there is no true lag but instead

the observed causal effect may simply depend on the lag chosen in any given

situation. Taking a different perspective, econometricians have developed dis-

tributed lag models to deal with this issue. More recent interest has emerged

in continuous time models, such as developed by Boker (2002, 2007) and Oud

(2007).

Maxwell and Cole’s (2007) literature review showed that many researchers

rely on cross-sectional designs to study mediation. Figure 3 shows a typical path

diagram depicting a situation where M appears to mediate the relation of X on

Y in a cross-sectional design. To the extent that a0 and b0 are nonzero, M is

said to mediate at least some of the effect of X on Y . To the extent that c0
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824 MAXWELL, COLE, MITCHELL

FIGURE 3 Cross-sectional mediation model.

is nonzero, X is said to have a direct effect of X on Y . Our basic question is

how accurate are these assertions if in fact the true mediational process follows

a longitudinal model, such as that depicted in either Figure 1 or 2. From the

perspective of either Model 1 or 2, it may seem reasonable to expect a cross-

sectional design to yield appropriate estimates of mediational effects under two

specific conditions. First, the path coefficients connecting any pair of variables

over time may be expected to be invariant to the choice of the particular point

in time. For example, the effect of maternal depression on parenting may be the

same in October as in March. Second, the system may have reached equilibrium,

so that the correlations among X , M , and Y are the same at every time point.

Under these conditions, a longitudinal design may seem unnecessary because a

cross-sectional design in October would yield the same parameter estimates as

a cross-sectional design in March.1 The next sections of the article assess the

extent to which this conjecture is correct.

Autoregressive Model 1

Estimating the cross-sectional direct effect of X on Y. Appendix A

shows the derivations of the cross-sectional zero-order correlations among X ,

M , and Y from the model shown in Figure 1. All appendices are available at

http://www.nd.edu/�smaxwell. These derivations assume that (a) X may have a

direct effect and an indirect effect on Y , (b) all direct effects occur over one unit

1On the other hand, if these simplifying assumptions do not hold, a cross-sectional design would

generate highly time-specific results that would call into question the utility of a cross-sectional

design for completely different reasons.
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BIAS IN CROSS-SECTIONAL ANALYSES 825

of time, (c) the path coefficients a, b, x, m, y, and c are invariant over time, and

(d) the system has reached equilibrium so that the cross-sectional correlations

among X , M , and Y do not depend on the time of measurement. Under these

conditions, the appendix shows that the population cross-sectional correlations

are given by

¡Xt Mt
D

ax

1 � mx
(4)

¡Xt Yt
D

cx C bx¡XtMt

1 � xy
(5)

¡Mt Yt
D

ac C .ab C cm/¡Xt Mt
C ay¡Xt Yt

C bm

1 � my
(6)

The essential question is how well do the cross-sectional parameters a0, b0,

and c0 as shown in Figure 3 accurately represent the underlying longitudinal

mediational process. We begin with c0, which represents the direct effect of

X on Y controlling for M . Because the population value of c0 in the cross-

sectional analysis is a standardized regression coefficient, it can be derived from

the correlations shown in Equations (4) through (6) as

c0
D

¡Xt Yt
� ¡Xt Mt

¡Mt Yt

1 � ¡2

Xt Mt

(7)

Appendix B shows that c0 can be rewritten in terms of the longitudinal model

parameters as

c0
D

.c C b¡Xt Mt
/.¡Xt Xt�1

� ¡Mt Mt�1
C cm.1 � xy/.1 � ¡2

Xt Mt
/

.1 � ¡2

Xt Mt
/.1 � xy/.1 � my/

(8)

where ¡Xt Xt�1
and ¡Mt Mt�1

refer to the stability of X and M , respectively,

between two adjacent time points. In other words, ¡Xt Xt�1
is the correlation

between X at any time t and X at the previous time point t � 1. Similarly,

¡Mt Mt�1
is the correlation between M at any time t and M at the previous time

point t � 1.

The bias in c0 as a cross-sectional estimator of the longitudinal parameter c

is of special interest. Subtracting c from c0 as shown in Equation (8) and then

simplifying terms shows that the difference between c0 and c can be written as

c0
� c D

.c C b¡Xt Mt
/.¡Xt Xt�1

� ¡Mt Mt�1
/

.1 � ¡2

Xt Mt
/.1 � xy/.1 � my/

C
cm

1 � my
� c (9)
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826 MAXWELL, COLE, MITCHELL

In the special case of complete mediation (where c D 0), Equation (9) shows

that as long as b and ¡Xt Mt
are nonzero, c0 equals c if and only if X and M are

equally stable. However, this equation also shows that c0 will not generally equal

c even when X and M are equally stable unless c equals 0. In other words,

when mediation is partial instead of complete, the cross-sectional parameter c0

generally is different from the corresponding longitudinal parameter c.

Equation (9) also reveals that c0 is sometimes larger than c, but other times

it is smaller than c. In particular, the term immediately to the right of the

equals sign is positive if X is more stable than M , but is negative if X is

less stable than M . Furthermore, the difference between cm=.1 � my/ and c

is positive if m.y C 1/ exceeds 1.0, but is negative otherwise. Thus, without

detailed knowledge of unknown longitudinal parameter values, it is impossible

to know whether the cross-sectional value c0 is likely to be larger or smaller

than the longitudinal parameter c.

The fact that c0 is generally different from c still leaves open a question

of whether the discrepancy is likely to be large enough to be of any scientific

or practical significance. Table 1 shows examples of parameter values of c0

and c under plausible conditions. Before discussing the scientific and practical

implications of Table 1, we explain the table entries themselves. The rows of the

table represent specific examples or combinations of values for the longitudinal

parameters a, b, c, x, m, and y. For example, row 1 depicts an example where

a D 0:3, b D 0:3, c D 0:2, x D 0:9, m D 0:3, and y D 0:6. Additional

columns show the corresponding cross-sectional correlations ¡XM , ¡M Y , and

¡XY , calculated from Equations (4), (6), and (5), respectively. For Case 1, ¡XM D

0:37, ¡M Y D 0:38, and ¡XY D 0:61. Notice that across the various examples

in Table 1, these correlations generally fall into a range that would be regarded

as medium (0.30) to large (0.50) according to Cohen’s (1988) conventions for

effect sizes. The fact that some of the correlations are slightly larger than 0.50

is plausible because we assume throughout that these are correlations between

latent variables, not manifest variables. The two rightmost columns in the table

pertain to the direct effect. In particular, the column labeled “c0” shows the

population value of the cross-sectional direct effect as calculated from Equation

(8). The final column, labeled as “bias (c0
�c),” shows the population difference

between the direct effect c0 calculated from the cross-sectional design and the

longitudinal direct effect c.

We begin our interpretation of Table 1 by focusing on the odd-numbered

rows. We subsequently return to the even-numbered rows. The odd-numbered

rows represent examples in which the direct effect as calculated from a cross-

sectional design provide a badly biased estimate of the actual longitudinal direct

effect parameter c. Rows 1, 3, 5, 7, 9, and 11 show that for a variety of

longitudinal parameter values, the direct effect calculated from a cross-sectional

design can seriously overestimate the longitudinal direct effect parameter. For
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BIAS IN CROSS-SECTIONAL ANALYSES 827

TABLE 1

Bias in the Estimated Direct Effect of X on Y: Autoregressive Model 1

Longitudinal Parametersa Cross-sectional Parametersb

Row a b c x m y ¡XM ¡M Y ¡XY c0

Bias

(c0 � c)

1 0.3 0.3 0.2 0.9 0.3 0.6 0.37 0.38 0.61 0.54 0.34

2 0.4 0.2 0.5 0.8 0.2 0.3 0.38 0.41 0.61 0.53 0.03

3 0.3 0.3 0.3 0.9 0.3 0.5 0.37 0.41 0.67 0.60 0.30

4 0.4 0.0 0.5 0.8 0.2 0.5 0.38 0.41 0.67 0.60 0.10

5 0.5 0.3 0.1 0.9 0.3 0.6 0.62 0.51 0.56 0.65 0.25

6 0.5 0.0 0.6 0.8 0.4 0.2 0.59 0.54 0.57 0.39 �0.21

7 0.3 0.4 0.2 0.8 0.3 0.6 0.32 0.40 0.50 0.42 0.22

8 0.3 0.1 0.6 0.7 0.5 0.2 0.32 0.41 0.51 0.43 �0.17

9 0.4 0.5 0.1 0.8 0.3 0.6 0.42 0.49 0.48 0.33 0.23

10 0.5 0.3 0.4 0.7 0.2 0.4 0.41 0.49 0.51 0.37 �0.03

11 0.4 0.2 0.3 0.8 0.3 0.6 0.42 0.48 0.59 0.47 0.17

12 0.5 0.1 0.6 0.7 0.2 0.3 0.41 0.50 0.57 0.43 �0.17

13 0.5 0.2 0.4 0.5 0.6 0.3 0.36 0.59 0.28 0.08 �0.32

14 0.3 0.5 0.1 0.7 0.6 0.4 0.36 0.58 0.27 0.07 �0.03

15 0.6 0.2 0.4 0.5 0.4 0.3 0.38 0.54 0.28 0.09 �0.31

16 0.3 0.4 0.1 0.7 0.6 0.5 0.36 0.54 0.26 0.08 �0.02

17 0.7 0.2 0.3 0.5 0.4 0.4 0.44 0.56 0.24 0.00 �0.30

18 0.5 0.4 0.1 0.6 0.5 0.5 0.43 0.55 0.23 �0.01 �0.11

19 0.7 0.2 0.4 0.5 0.3 0.3 0.41 0.56 0.28 0.07 �0.33

20 0.4 0.5 0.0 0.7 0.5 0.6 0.43 0.57 0.26 0.02 0.02

21 0.7 0.2 0.4 0.6 0.3 0.3 0.51 0.60 0.37 0.08 �0.32

22 0.5 0.5 0.1 0.7 0.4 0.5 0.49 0.60 0.37 0.10 0.00

23 0.5 0.2 0.4 0.6 0.6 0.3 0.47 0.65 0.36 0.07 �0.33

24 0.7 0.0 0.6 0.5 0.4 0.3 0.44 0.68 0.35 0.07 �0.53

aHypothetical path coefficients for the longitudinal model depicted in Figure 1.
bThe cross-sectional parameters that would emerge for the model in Figure 3 if the longitudinal

model in Figure 1 were the true model.

example, row 1 shows an example where the actual value of c equals 0.20, but

the population value of the cross-sectional direct effect equals 0.54, resulting in

a bias of 0.34.

Rows 13, 15, 17, 19, 21, and 23 show examples in which the direct effect

calculated from a cross-sectional design can badly underestimate the longitudinal

direct effect. For example, row 13 shows a scenario where the actual value of c

equals 0.40, but the population value of the cross-sectional direct effect is only

0.08, resulting in a bias of �0.32.

The fundamental implication of Table 1 is that cross-sectional designs cannot

necessarily be expected to provide even a rough approximation to longitudinal

direct effects under the autoregressive model shown in Figure 1. Even in a very
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828 MAXWELL, COLE, MITCHELL

large sample, a cross-sectional direct effect value can be either much smaller or

much larger than the actual longitudinal direct effect.

Can we use cross-sectional correlations to anticipate the direction and
magnitude of bias in the longitudinal direct effect? Even though cross-

sectional direct effects can be badly biased, a cross-sectional design may be

informative if the pattern of cross-sectional correlations could be used to discern

the likely magnitude and direction of bias in c0. For example, it may be possible

that a certain configuration of cross-sectional correlations would correspond to

negative bias, whereas another configuration may correspond to positive bias.

Unfortunately, an examination of adjacent odd and even rows in Table 1 shows

this goal is not generally achievable. For example, consider row 1. The three

correlations of ¡XM D 0:37, ¡M Y D 0:38, and ¡XY D 0:61 imply that c0
D

0:54, when longitudinal c D :20. If we could know that this configuration of

correlations is prone to a large positive bias, researchers could at least be aware

that analyses obtained from this pattern of correlations should be interpreted

accordingly. However, row 2 shows that almost exactly the same correlations can

also correspond to very different longitudinal parameters. In particular, c D 0:5

in row 2, so here c0 is almost an unbiased estimator of c. Closer inspection

of Table 1 shows that for every odd-numbered row, the next even-numbered

case depicts virtually identical cross-sectional correlations with very different

values of the longitudinal direct effect parameter c.2 The practical implication

is that a given pattern of cross-sectional correlations may correspond to a wide

range of values for the underlying longitudinal direct effect, essentially rendering

any interpretation of the cross-sectional correlations as meaningless. Duplicate

values arise here because multiple combinations of six longitudinal parameter

values exist to fit the values of only three cross-sectional correlations. From

the perspective of SEM, this is akin to an underidentified model, where it is

impossible to find a unique solution for parameter estimates.

Estimating the cross-sectional indirect effect of X on Y. The previous

sections demonstrated that cross-sectional estimates of the direct effect of X

on Y can be seriously biased. We now turn our attention to cross-sectional

estimation of the indirect effect. Appendix C shows that the indirect effect a0 b0

2The reason the correlations in each even-numbered row are slightly different from the

corresponding correlations in each odd-numbered row is because only model parameters with exactly

one nonzero value to the right of the decimal are considered here. If model parameters were allowed

to have a second nonzero value to the right of the decimal, the correlations could be made essentially

the same. For example, row 2 parameter values of a D 0:38, c D 0:50, x D 0:81, m D 0:20,

b D 0:18, and y D 0:30 lead to correlations of 0.37, 0.38, and 0.61, all of which are exactly the

same as the row 1 correlations rounded to two decimal places.
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BIAS IN CROSS-SECTIONAL ANALYSES 829

in the cross-sectional analysis can be written as

.c C b¡Xt Mt
/.¡Mt Mt�1

� x¡2

Xt Mt
� xmy � xmy¡2

XtMt
/ � m.1 � ¡2

Xt Mt
/.1 � xy/

.1 � ¡2

Xt Mt
/.1 � xy/.1 � my/

(10)

Unfortunately, this expression is not easily interpreted and cannot be simplified.

The very complexity of the expression, however, reveals that a0b0 will generally

not equal ab, so cross-sectional analyses typically yield a biased estimate of the

longitudinal indirect effect. Some specific examples help to clarify this point.

Table 2 shows examples of parameter values of a0b0 and ab under plausible

conditions. The general format of this table is similar to that of Table 1, except

TABLE 2

Bias in the Estimated Indirect Effect of X on Y: Autoregressive Model 1

Longitudinal Parametersa Cross-sectional Parametersb

Row a b c x m y ¡XM ¡M Y ¡XY a0b0

Bias

(a0b0 � ab)

1 0.50 0.30 0.0 0.7 0.6 0.6 0.60 0.53 0.22 0.37 0.22

2 0.45 0.10 0.1 0.7 0.7 0.7 0.62 0.50 0.22 0.36 0.32

3 0.50 0.20 0.3 0.7 0.5 0.5 0.54 0.66 0.44 0.32 0.22

4 0.50 0.00 0.7 0.6 0.7 0.1 0.52 0.67 0.45 0.31 0.31

5 0.50 0.20 0.2 0.7 0.6 0.5 0.60 0.63 0.35 0.40 0.30

6 0.70 0.40 0.1 0.7 0.3 0.5 0.62 0.60 0.37 0.37 0.09

7 0.70 0.05 0.3 0.6 0.7 0.7 0.41 0.67 0.33 0.27 0.25

8 0.70 0.20 0.4 0.5 0.4 0.4 0.44 0.69 0.30 0.30 0.16

9 0.50 0.20 0.4 0.7 0.6 0.3 0.60 0.72 0.46 0.42 0.32

10 0.65 0.50 0.2 0.7 0.3 0.4 0.58 0.71 0.47 0.38 0.05

11 0.50 0.20 0.2 0.7 0.6 0.6 0.60 0.73 0.39 0.47 0.37

12 0.55 0.50 0.2 0.7 0.5 0.2 0.59 0.70 0.40 0.42 0.14

13 0.60 0.60 0.0 0.5 0.3 0.6 0.35 0.44 0.15 0.16 �0.20

14 0.20 0.30 0.0 0.8 0.7 0.6 0.36 0.43 0.17 0.16 0.10

15 0.70 0.60 0.2 0.5 0.3 0.3 0.41 0.63 0.26 0.26 �0.16

16 0.50 0.00 0.3 0.5 0.7 0.7 0.38 0.61 0.23 0.24 0.24

17 0.70 0.60 0.0 0.5 0.3 0.4 0.41 0.42 0.15 0.18 �0.24

18 0.50 0.00 0.2 0.5 0.7 0.7 0.38 0.41 0.15 0.16 0.16

19 0.60 0.60 0.1 0.5 0.3 0.5 0.35 0.52 0.21 0.18 �0.18

20 0.15 0.50 0.0 0.9 0.7 0.3 0.36 0.49 0.22 0.17 0.10

21 0.50 0.60 0.1 0.5 0.3 0.5 0.29 0.44 0.18 0.12 �0.18

22 0.20 0.30 0.1 0.7 0.7 0.5 0.27 0.44 0.20 0.11 0.05

23 0.50 0.60 0.0 0.5 0.3 0.6 0.29 0.37 0.13 0.11 �0.19

24 0.15 0.25 0.0 0.8 0.7 0.7 0.27 0.39 0.12 0.10 0.07

aHypothetical path coefficients for the longitudinal model depicted in Figure 1.
bThe cross-sectional parameters that would emerge for the model depicted in Figure 3 if the

longitudinal model in Figure 1 were the true model.
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830 MAXWELL, COLE, MITCHELL

now the focus is on the indirect effect instead of the direct effect. In particular,

the column labeled “a0b0” shows the population value of the cross-sectional

indirect effect as calculated from Equation (10). The final column, labeled

“bias (a0b0
� ab),” shows the population difference between the indirect effect

a0b0 calculated from the cross-sectional design and ab calculated from the

corresponding longitudinal model.

As we did with Table 1, we begin our interpretation of Table 2 by con-

centrating on the odd-numbered rows. These rows of the table show that the

indirect effect as calculated from a cross-sectional design can provide a badly

biased estimate of the actual longitudinal indirect effect ab. Rows 1, 3, 5, 7, 9,

and 11 show that for a variety of longitudinal parameter values, cross-sectional

estimates of the indirect effect seriously overestimate the longitudinal indirect

effect. For example, row 1 shows a scenario where the actual value of ab equals

0.15 but the cross-sectional value of a0b0 equals 0.37, thus yielding a population

value that is 0.22 larger than the longitudinal value. Several other rows of the

table show that even larger positive bias can occur.

Rows 13, 15, 17, 19, 21, and 23 show that cross-sectional estimates of the

indirect effect can also seriously underestimate the longitudinal indirect effect.

For example, row 13 shows an example where the actual longitudinal value of

the indirect effect equals 0.36, but the population value of the cross-sectional

indirect effect is only 0.16, resulting in a bias of �0.20.

In summary, Table 2 shows that cross-sectional designs cannot necessarily be

expected to provide a good approximation of longitudinal indirect effects under

the autoregressive model shown in Figure 1. As we saw for the direct effect,

the direction of bias in the indirect effect is generally unpredictable. A cross-

sectional design can seriously overestimate or underestimate the magnitude of

a longitudinal indirect effect.

Can we use cross-sectional correlations to anticipate the direction and

magnitude of bias in the longitudinal indirect effect? We saw earlier that

any given set of cross-sectional correlations among X , M , and Y at a fixed

point in time could possibly reflect either of two very different values of the

longitudinal direct effect. Table 2 shows that the same is true of the indirect

effect. For example, consider row 1. The three correlations of ¡XM D 0:60,

¡M Y D 0:53, and ¡XY D 0:22 imply that a0b0
D 0:37. Row 2 reflects an alternate

scenario where b is one third as large as in Row 1 and yet the cross-sectional

correlations are virtually identical. Additional inspection of Table 2 shows that

for every odd-numbered case, the next even-numbered case depicts virtually

identical cross-sectional correlations with very different values for either or both

of the longitudinal indirect effect parameters a and b. The practical implication

is that a given pattern of cross-sectional correlations may correspond to a wide

range of values for the underlying longitudinal indirect effect parameters, thus
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BIAS IN CROSS-SECTIONAL ANALYSES 831

essentially rendering any interpretation of the cross-sectional correlations as

virtually meaningless.

Does cross-sectional mediation necessarily reflect longitudinal media-
tion? A very important question arises when a cross-sectional analysis suggests

that M mediates the effect of X on Y . To what extent can such an analysis be

trusted? We show algebraically and numerically that it is quite possible for a

cross-sectional analysis to imply complete mediation when, according to Model

1, there is actually no mediation whatsoever. We focus on a situation where

there is no direct effect of M on Y , in which case b D 0, while allowing X to

have a direct effect on M . For example, initial research may strongly support

a conclusion that X influences an intermediate outcome M , but further work

is needed to ascertain whether M then has an additional influence on Y , the

outcome of ultimate interest.3

From an algebraic perspective, when b D 0, Equation (10) for the cross-

sectional indirect effect a0b0 simplifies to

c.¡Mt Mt�1
� x¡2

XtMt
� xmy � xmy¡2

XtMt
/ � m.1 � ¡2

Xt Mt
/.1 � xy/

.1 � ¡2

Xt Mt
/.1 � xy/.1 � my/

(11)

Equation (11) shows that the cross-sectional indirect effect equals 0 only when

both c and m equal zero, except for unlikely combinations of the other parameter

values. The important practical implication is that even when b D 0 (so that

no longitudinal mediation exists whatsoever), the cross-sectional indirect effect

will quite likely be nonzero, falsely suggesting the existence of mediation.

Table 3 shows a variety of longitudinal parameters sharing only the fact

that b D 0, so there is no direct effect of M on Y and hence no longitudinal

mediation. The two rightmost columns show that a very different conclusion

would be reached from a cross-sectional analysis. In all of the cases shown in

the table, the cross-sectional population indirect effect is substantial, as reflected

by sizable values of the product a0b0. Furthermore, the cross-sectional population

direct effect, c0, is zero to two decimal places. Of course, in a sample, c0

3We focus on b D 0 instead of a D 0 for two closely related reasons. First, it seems less likely

that researchers may mistakenly infer that M mediates a relation between X and Y if a D 0 because,

according to the autoregressive model, X and M are uncorrelated when a D 0. Unless X correlates

with M , researchers are unlikely to infer mediation. Second, initial stages of research are more

likely to reveal whether X and M are correlated. If not, it is unlikely that researchers may proceed

to consider Y . Even if Y is initially included, mediation is unlikely to occur as an explanation

when X and M are uncorrelated. On the other hand, it is easy to imagine scenarios where initial

research shows that X and M are correlated, leading to later research investigating Y . In addition, if

b is the only parameter equal to zero in the autoregressive model, all three cross-sectional bivariate

correlations among X , M , and Y will be positive, and in fact all three correlations can be quite

substantial, thus failing to provide a clue that the longitudinal indirect effect may be zero.
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832 MAXWELL, COLE, MITCHELL

TABLE 3

Bias in the Estimated Indirect Effect of X on Y When b D 0: Autoregressive Model 1

Longitudinal Parametersa Cross-sectional Parametersb

Row a b c x m y ¡XM ¡M Y ¡XY a0b0 c0

1 0.40 0.00 0.15 0.75 0.70 0.70 0.63 0.38 0.24 0.24 0.00

2 0.40 0.00 0.25 0.75 0.70 0.70 0.63 0.63 0.39 0.40 0.00

3 0.45 0.00 0.15 0.75 0.65 0.60 0.66 0.31 0.20 0.20 0.00

4 0.45 0.00 0.25 0.65 0.70 0.65 0.54 0.53 0.28 0.29 0.00

5 0.45 0.00 0.25 0.70 0.70 0.50 0.62 0.43 0.27 0.27 0.00

6 0.50 0.00 0.20 0.65 0.65 0.55 0.56 0.36 0.20 0.20 0.00

7 0.50 0.00 0.30 0.50 0.70 0.70 0.38 0.61 0.23 0.24 0.00

8 0.50 0.00 0.30 0.60 0.70 0.50 0.52 0.50 0.26 0.26 0.00

9 0.50 0.00 0.40 0.60 0.70 0.50 0.52 0.66 0.34 0.34 0.00

10 0.55 0.00 0.30 0.50 0.70 0.50 0.42 0.48 0.20 0.20 0.00

11 0.55 0.00 0.30 0.70 0.55 0.60 0.63 0.58 0.36 0.36 0.00

12 0.60 0.00 0.25 0.60 0.55 0.50 0.54 0.40 0.21 0.21 0.00

13 0.60 0.00 0.30 0.55 0.55 0.60 0.47 0.52 0.25 0.24 0.00

14 0.60 0.00 0.35 0.60 0.55 0.50 0.54 0.56 0.30 0.30 0.00

15 0.60 0.00 0.45 0.50 0.65 0.40 0.44 0.63 0.28 0.28 0.00

16 0.65 0.00 0.25 0.55 0.50 0.55 0.49 0.41 0.20 0.20 0.00

17 0.65 0.00 0.40 0.40 0.60 0.50 0.34 0.58 0.20 0.20 0.00

18 0.65 0.00 0.50 0.35 0.70 0.40 0.30 0.67 0.20 0.20 0.00

19 0.70 0.00 0.25 0.55 0.40 0.60 0.49 0.41 0.21 0.21 0.00

20 0.75 0.00 0.35 0.45 0.35 0.70 0.40 0.57 0.23 0.23 0.00

aHypothetical path coefficients for the longitudinal model depicted in Figure 1.
bThe cross-sectional parameters that would emerge for the model depicted in Figure 3 if the

longitudinal model in Figure 1 were the true model.

may deviate from zero simply because of sampling error, but a statistical test

would almost always identify this effect as nonsignificant. The combination of

a sizable indirect effect with absolutely no direct effect would typically appear

to imply that M completely mediates the relation between X and Y . Although

this conclusion seems clear and may satisfy a researcher’s desire to identify a

mediating variable, the conclusion is exactly opposite in the longitudinal model.

The fact that b D 0 implies that there is no longitudinal mediation whatsoever,

contrary to the apparent implications of the cross-sectional analysis.

Autoregressive Model 2

Estimating cross-sectional direct and indirect effects. We now shift our

attention to the second autoregressive model. Similar to the first model, Model

2 assumes that it takes 1 unit of time for X to influence M and also 1 unit of
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BIAS IN CROSS-SECTIONAL ANALYSES 833

time for M to influence Y . However, unlike the first model, the second model

assumes that it takes 2 units of time for X to influence Y directly, as shown in

Figure 2. We take the same approach with Model 2 as we did with Model 1,

but provide less detail because it is shown that the general pattern of findings is

largely unchanged.

Appendix D shows the derivations of the cross-sectional zero-order correla-

tions among X , M , and Y from the model shown in Figure 2. These derivations

assume that (a) X may have a direct effect and an indirect effect on Y , (b) the

direct effect of X on Y occurs over two units of time, (c) the path coefficients

a, b, x, m, y, and c are invariant over time and (d) the system has reached

equilibrium so that the cross-sectional correlations among X , M , and Y do not

depend on the time of measurement. Under these conditions, Appendix D shows

that the population cross-sectional correlations are given by

¡Xt Mt
D

ax

1 � mx
(12)

¡Xt Yt
D

cx2
C bx¡XtMt

1 � xy
(13)

¡Mt Yt
D

acx C .ab C cm2/¡Xt Mt
C ay¡Xt Yt

C acmx C bm

1 � my
(14)

Once again, the essential question is how well do the cross-sectional param-

eters a0, b0 and c0 as shown in Figure 3 accurately represent the underlying

longitudinal mediational process. We begin with c0, which represents the direct

effect of X on Y controlling for M . Because the population value of c0 in the

cross-sectional analysis is a standardized regression coefficient, it can be derived

from the correlations shown in Equations (12) through (14) as

c0
D

¡Xt Yt
� ¡Xt Mt

¡Mt Yt

1 � ¡2

Xt Mt

(15)

Appendix E shows that c0 can be rewritten in terms of the longitudinal model

parameters as

c0
D

.cx C b¡Xt Mt
/.¡Xt Xt�1

� ¡Mt Mt�1
/ C cm.1 � xy/.x � m¡2

Xt Mt
� ax¡XtMt

/

.1 � ¡2

Xt Mt
/.1 � xy/.1 � my/

(16)

Comparing the expression for c0 in Equation (16) to the expression for c0

in Model 1 (i.e., Equation 8) shows that although the expressions are not

mathematically equivalent, they are similar to one another.
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834 MAXWELL, COLE, MITCHELL

The bias in c0 as a cross-sectional estimator of the longitudinal parameter c is

of particular interest. Subtracting c from c0 as shown in Equation (16) and then

simplifying terms shows that the difference between c0 and c can be written as

c0
� c D

.cx C b¡Xt Mt
/.¡Xt Xt�1

� ¡Mt Mt�1
/

.1 � ¡2

Xt Mt
/.1 � xy/.1 � my/

C
cm.x � m¡2

Xt Mt
� ax¡Xt Mt

/

.1 � ¡2

Xt Mt
/.1 � my/

� c

(17)

As is true in Model 1, c0 will not generally equal c even when X and M

are equally stable unless c equals 0. In other words, when mediation is partial

instead of complete, the cross-sectional parameter c0 will generally be different

from the corresponding longitudinal parameter.

Equation (17) also reveals that c0 sometimes is larger than c, but other times

is smaller than c. Although the precise numerical values for bias in Model 2

are not identical to those in Model 1, the general pattern of results is very

similar. For that reason, we refrain from presenting detailed tables of the bias

in the direct effect. Instead, we briefly consider the bias in the indirect effect,

and then focus on the critical question of whether mediation can appear to exist

in a cross-sectional design even when no mediation whatsoever occurs in the

longitudinal model.

Appendix F shows that the indirect effect a0b0 in the cross-sectional analysis

can be written as

a0b0
D

c¡Xt Mt
..¡Xt Mt

.m2.1 � xy/ � x2.1 � my/// C ax.1 C m � mxy//

C b¡Xt Mt
.¡Mt Mt�1

� mxy C mxy¡2

XM
� x¡2

XtMt
/

.1 � ¡2

Xt Mt
/.1 � xy/.1 � my/

(18)

The complexity of Equation (18) makes it all too apparent that the cross-sectional

indirect effect a0b0 will rarely equal the longitudinal indirect effect ab. As a

result, a cross-sectional design almost always yields a biased estimate of the

longitudinal indirect effect. Examining specific examples for Model 2 yields

results that are very similar to those for Model 1; consequently, we do not

present additional details here.

Does cross-sectional mediation necessarily reflect longitudinal media-

tion? As we previously showed for Model 1, we now show that it is quite pos-

sible for a cross-sectional analysis to imply complete mediation when (a) Model

2 is the true model and (b) longitudinal mediation does not exist. As before,

we focus on a situation where there is no longitudinal direct effect of M on Y

because b D 0, yet X has a direct effect on M .
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From an algebraic perspective, when b D 0, Equation (18) for the cross-

sectional indirect effect a0b0 simplifies to

a0b0
D

c¡Xt Mt
..¡Xt Mt

.m2.1 � xy/ � x2.1 � my/// C ax.1 C m � mxy//

.1 � ¡2

Xt Mt
/.1 � xy/.1 � my/

:

(19)

Equation (19) shows that the cross-sectional indirect effect equals 0 only when

either c or ¡XM equals 0 except for unlikely combinations of other parameter

values. However, Equation (14) shows that if b and c equal 0, M and Y will

be uncorrelated. Thus, the cross-sectional indirect effect equals 0 when b D 0

only if X and M are uncorrelated or M and Y are uncorrelated. Researchers

will presumably not be terribly interested in studying mediation if either of

these correlations is zero. The important practical implication is that even when

b D 0 and thus there is literally no longitudinal mediation whatsoever, it is quite

likely that the cross-sectional indirect effect is nonzero, falsely suggesting the

existence of mediation.

Table 4 shows a variety of longitudinal parameters sharing only the fact that

b D 0, so there is no effect of M on Y and hence no longitudinal mediation.

The two rightmost columns, however, show that a very different conclusion

would be reached from a cross-sectional analysis. In the cases shown in the

table, the cross-sectional population indirect effect is substantial, as reflected by

sizable values of the product a0b0. Furthermore, the cross-sectional direct effect,

c0, is zero to two decimal places. A sizable cross-sectional indirect effect in

combination with absolutely no cross-sectional direct effect spuriously implies

that M completely mediates the relation between X and Y , despite the fact

that b D 0 in the longitudinal model precludes the possibility of any mediation

whatsoever.

CONCLUSION

The principal conclusion of this article is that cross-sectional estimates of me-

diation typically generate biased estimates of longitudinal mediation parameters

even in very large samples. Cross-sectional estimates can either seriously un-

derestimate or overestimate longitudinal parameters. This conclusion holds for

direct effects as well as indirect effects. Furthermore, the direction of bias is

generally impossible to discern from the cross-sectional data.

An especially important conclusion is that cross-sectional analyses can imply

the existence of a mediator variable when in reality there is no underlying longi-

tudinal meditational process whatsoever. Cross-sectional data that seem to imply

complete mediation can in fact reflect longitudinal data where there is a strong

direct effect but a complete lack of mediation. In other words, the cross-sectional
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TABLE 4

Bias in the Estimated Indirect Effect of X on Y When b D 0: Autoregressive Model 2

Longitudinal Parametersa Cross-sectional Parametersb

Row a b c x m y ¡XM ¡M Y ¡XY a0b0 c0

1 0.40 0.00 0.25 0.80 0.65 0.65 0.67 0.50 0.33 0.33 0.00

2 0.40 0.00 0.40 0.70 0.70 0.50 0.55 0.55 0.30 0.30 0.00

3 0.45 0.00 0.35 0.60 0.65 0.60 0.44 0.45 0.20 0.20 0.00

4 0.45 0.00 0.40 0.80 0.60 0.55 0.69 0.66 0.46 0.46 0.00

5 0.45 0.00 0.50 0.70 0.65 0.35 0.58 0.56 0.32 0.32 0.00

6 0.50 0.00 0.20 0.70 0.55 0.70 0.57 0.34 0.19 0.20 0.00

7 0.50 0.00 0.40 0.60 0.60 0.50 0.47 0.44 0.21 0.21 0.00

8 0.50 0.00 0.40 0.75 0.55 0.60 0.64 0.65 0.41 0.41 0.00

9 0.50 0.00 0.50 0.55 0.60 0.55 0.41 0.53 0.22 0.22 0.00

10 0.55 0.00 0.35 0.65 0.50 0.65 0.53 0.48 0.26 0.26 0.00

11 0.55 0.00 0.60 0.50 0.55 0.55 0.38 0.56 0.21 0.21 0.00

12 0.60 0.00 0.35 0.65 0.45 0.55 0.55 0.42 0.23 0.23 0.00

13 0.60 0.00 0.45 0.60 0.45 0.60 0.49 0.51 0.25 0.25 0.00

14 0.60 0.00 0.45 0.65 0.45 0.60 0.55 0.57 0.31 0.32 0.00

15 0.60 0.00 0.55 0.60 0.45 0.60 0.49 0.62 0.31 0.31 0.00

16 0.65 0.00 0.40 0.60 0.40 0.50 0.51 0.40 0.21 0.20 0.00

17 0.65 0.00 0.50 0.50 0.40 0.70 0.41 0.48 0.19 0.20 0.00

18 0.65 0.00 0.60 0.50 0.40 0.60 0.41 0.52 0.21 0.21 0.00

19 0.70 0.00 0.50 0.55 0.35 0.50 0.48 0.44 0.21 0.21 0.00

20 0.75 0.00 0.60 0.55 0.30 0.40 0.49 0.48 0.23 0.24 0.00

aHypothetical path coefficients for the longitudinal model depicted in Figure 2.
bThe cross-sectional parameters that would emerge for the model depicted in Figure 3 if the

longitudinal model in Figure 2 were the true model.

data can clearly suggest a meditational process when the longitudinal reality

is that no mediation exists at all. Unfortunately, this raises serious questions

about the value of preliminary cross-sectional studies as a prelude to more time-

consuming and expensive longitudinal designs. Our results show that a variable

that appears to be a candidate mediator based on a preliminary cross-sectional

analysis may not be a mediator at all longitudinally, and just as troubling, a

variable that appears not to be a candidate mediator cross-sectionally may in

fact be an important mediator longitudinally.

A related limitation of cross-sectional designs for studying mediation is that

a given pattern of cross-sectional correlations can arise from very different

combinations of underlying longitudinal parameters. As a result, any attempt

to infer the properties of the underlying longitudinal process on the basis of

the cross-sectional parameters is almost certainly futile. Perhaps it should come

as no surprise that accurate understanding of processes that develop over time
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is likely to demand longitudinal designs, but the literature shows that many

researchers ignore this point when studying mediation.

The fundamental reason for the inability of the cross-sectional model to

capture longitudinal processes is that it fails to represent effects of X on M and

Y and of M on Y over time. As such, the cross-sectional model is misspecified,

and parameter estimates are generally biased. In fact, Judd and Kenny (1981)

explicitly pointed out many years ago that failing to include prior assessments of

the mediator and the outcome could lead to bias. Reichardt and Gollob (1986)

noted that the cross-sectional model is misspecified for a second reason: it fails

to allow causation to occur over time and instead presumes that X at time t

causes M at the same time t .

The fact that cross-sectional parameters generally differ from corresponding

longitudinal parameters implies that cross-sectional hypothesis tests will also be

biased (cf. Casella & Berger, 2002). When the population value of a longitudinal

parameter is zero, we have seen that the corresponding cross-sectional parameter

can be very different from zero. In such situations, Type I errors become

almost inevitable, especially in large samples. Similarly, statistical tests can

have very low power, because a cross-sectional parameter value close to zero

can correspond to a sizable longitudinal parameter value.

Unfortunately, relying on confidence intervals is no better. The likelihood that

a confidence interval around a biased cross-sectional parameter estimate will

include the longitudinal parameter of interest will approach zero as the sample

size increases. What appears to be a very accurate interval (because of a large

sample size) may in fact have an upper and lower bound, neither of which is

remotely close to the true longitudinal parameter value. The important practical

point here is that the substantial bias that typically exists in cross-sectional

analyses of mediation can render p values or confidence intervals obtained from

cross-sectional data essentially meaningless.

As MacKinnon et al. (2002) emphasized, another important advantage of lon-

gitudinal designs is that they can yield information about temporal precedence,

and thus allow examination of which variables are causes and which variables are

effects. For example, although maternal depression may well contribute to child

depression, the opposite can also be true. Longitudinal designs are especially

well suited to examine such complex causal relations.

Several limitations of the present work suggest avenues for future researchers.

First, in the present study we did not examine the role of time lag duration in

the design and analysis of longitudinal studies. As has been discussed elsewhere

(e.g., Cole & Maxwell, 2003; Gollob & Reichardt, 1985, 1987, 1991), estimates

of effects in longitudinal models can change greatly depending on the chosen

time lag. In this respect, continuous time models (e.g., Boker, 2002, 2007; Oud,

2007) offer an interesting alternative because parameter values are unaffected

by choice of time lag between adjacent measurement occasions.
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A second limitation is that in the present study we focused specifically on

mediation when X , M , and Y are all changing over time. However, important

special cases exist in which X is fixed in time. In experimental designs or

intervention studies, where participants are assigned to treatment or control

conditions, investigators are often interested in the potential mediators of the

manipulation or treatment. In fact, a strong case can be made that this type of

design provides the optimal approach for studying mediation, because random

assignment ensures that effects of X on M and of X on Y (but not M on Y

unless M is manipulated in a separate study) are in fact causal and not simply

correlational. It should be noted that such designs are inherently longitudinal,

because any posttest assessment necessarily occurs after the implementation of

the intervention. Even so, a question exists about the necessity of measuring M

and/or Y at multiple time points in this design.

Third, we have shown that cross-sectional estimates of meditational processes

are biased only in a very special case where the true underlying model is

presumed to be a longitudinal autoregressive model. In particular, we have

not considered how accurate cross-sectional analyses may be when underlying

processes correspond to a different type of model, such as a continuous time

model, a potential outcomes model, or a multilevel model. Given that traditional

cross-sectional analyses of mediation can be badly misleading for relatively

simple underlying SEM models that in many ways are similar to popular cross-

sectional SEM models, it seems unlikely that they will be more accurate for

more complex types of underlying models. That said, further research is clearly

needed to verify or disconfirm our expectations.

In summary, we find that cross-sectional approaches to longitudinal mediation

can substantially over- or underestimate longitudinal effects even when longitudi-

nal parameter estimates are completely stable, and there is no measurement error.

Even cross-sectional correlations that appear to support complete mediation

may in fact reflect a longitudinal process with no mediation whatsoever. As

Judd and Kenny (1981) stated nearly 30 years ago, “While the estimation of

longitudinal multiple indicator process models is complex, it is also likely to

be quite rewarding, since only through such an analysis can we glimpse the

process whereby treatment effects are produced” (p. 613). We urge researchers

interested in mediational processes to collect multiple waves of data and use the

increasing collection of data analytic methods that formally take the passage of

time into account.
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