
VOL. 88, No. 2 SEPTEMBER 1980

Psychological Bulletin

A Critique of Cross-Lagged Correlation

David Rogosa
Department of Education, University of Chicago

Cross-lagged correlation is not a useful procedure for the analysis of longitudinal
panel data. In particular, the difference between the cross-lagged correlations is
not a sound basis for causal inference. Demonstrations of the failure of cross-
lagged correlation are based mainly on results for the two-wave, two-variable
longitudinal panel design. Extensions of these results to panels with multiple
waves and multiple measures reveal additional problems.

The topic of this article is the analysis of
reciprocal causal effects. Often, questions about
reciprocal causal effects have been phrased,
Does X cause F or does Y cause X? More
formally, many have spoken of a determination
of causal predominance or of a preponderant
causal effect. Examples of such research ques-
tions in developmental psychology include the
reciprocal influences in mother-child interac-
tion (Clarke-Stewart, 1973) and relationships
between infant intelligence and infant behavior
(Crano, 1977). Examples from educational re-
search include the relationship between teacher
expectation and student achievement (Crano
& Mellon, 1978; Humphreys & Stubbs, 1977;
West & Anderson, 1976) and the relationship
between self-concept and achievement (Bach-
man & O'Malley, 1977; Calsyn & Kenny,
1977; Purkey, 1970). Empirical research on
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topics such as these has resulted in the collec-
tion and analysis of large amounts of longi-
tudinal panel data.

Data from a longitudinal panel consist of
observations on n cases at T (I = 1, . . . , T)
time points or waves. At each time point, ob-
servations on one or more variables are ob-
tained. Much attention is given to the simplest
relevant panel design : the two-wave, two-vari-
able (2W2V) longitudinal panel. For 2W2V
panels the two variables are labeled X and Y.
These variables are subscripted to indicate the
time of measurement. Thus for each individual
case, measures X\, Y\, X%, and Y^ are available.

Cross-lagged correlation (CLC) is currently
the most popular procedure in many areas of
psychological and educational research for
identifying causal effects from longitudinal
panel data. Most often CLC is used to deter-
mine a predominant causal influence—the
causal winner.

Users of CLC often make enthusiastic claims.
For example, Crano and Mellon (1978) as-
serted,

i
With the introduction of the cross-lagged panel correla-
tional method. . ., causal inferences based on correla-
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tional data obtained in longitudinal panel studies can
be made and enjoy the same logical status as those de-
rived in the more standard experimental settings,
(p. 41)

Although technical deficiencies in CLC have
been noted (Bohrnstedt, 1969; Duncan, 1969;
Goldberger, 1971; Heisc, 1970), CLC is widely
recommended (e.g., Calsyn, 1976; Calsyn &
Kenny, 1977; Clarke-Stewart, 1973; Crano,
1974, 1977; Humphreys & Stubbs, 1977;
Kenny, 1975).

I find that CLC does not provide sound in-
formation about casual effects. CLC may in-
dicate the absence of direct causal influence
when important causal influences, balanced
or unbalanced, are present. Also, CLC may
indicate a causal predominance when no causal
effects are present. Moreover, CLC may indi-
cate a causal predominance opposite to that of
the actual structure of the data; that is, CLC
ma)r indicate that X causes F when the reverse
is true.

A basic deficiency in CLC is the lack of an
explicit definition of a causal effect. Without a
clearly defined quantity to be estimated, it is
not surprising that CLC fails to provide sound
information about causal effects. The assess-
ment of causal effects should be based on a
model for the data in which causal effects are
identified. In the next section definitions of
causal effects derived from three different
models for longitudinal data are presented.

Also, the emphasis in CLC on the determi-
nation of a causal winner is unwise. Causal pre-
dominance is not the only important question.
The reciprocal nature of many social and de-
velopmental processes makes determination
only of causal predominance an oversimplifi-
cation of the research problem. Measures of
the strength and duration of the reciprocal
relationship and of the specific causal effects
are more informative than the determination
of a causal winner.

Causal Effects in Longitudinal Panel Data

To evaluate the usefulness of CLC, it is
necessary to develop operational definitions of
causal effects in longitudinal panel data. Defini-
tions of causal effects are based on models for
the panel data. No complete treatment of
causality is attempted or claimed; the primary

purpose is to identify the parameters in models
for longitudinal panel data that represent re-
ciprocal causal effects. To simplify the exposi-
tion, models for 2W2V data are emphasized;
extensions to panel data with additional waves
or variables are straightforward in most cases.
Definitions of causal effects obtained from con-
sideration of structural regression models,
continuous-time models, and multiple time-
series models are identical.

Structural Regression Models

A structural regression model for longitudinal
panel data is one plausible model from which
the longitudinal panel data could have been
generated. For two variables, X and Y, the
causal influences are represented by the regres-
sion parameters of the path from a prior X to a
later Y and from a prior Y to a later X. This
representation can be formulated for two-wave
or multiwave panel data. (When the regression
model is formulated in terms of latent variables
having multiple indicators at each time point,
the causal effects are represented by the re-
gression parameters for the structural regres-
sion equations that relate the latent variables.)

Previous formulations of regression models
for panel data with reciprocal causal effects
have focused on models for 2 W2V data (Duncan,
1969, 1972, 1975; Goldberger, 1971; Heise,
1970). For this simple configuration, the
structural regression model is equivalent to a
path analysis model. Figure 1 is a representa-
tion of a specific structural regression model
for 2W2V data. This configuration can also be
represented by the structural regression
equations:

X, = 7,7!

The parameters /3i and 71 represent the influ-
ence of a variable on itself over time. The
parameters fo and 72 represent the lagged,
reciprocal causal effects between X and F.
Thus /32 and 72 are key quantities in the in-
vestigation of reciprocal causal effects in
2W2V panels.

Restrictions on the nature of the causal in-
fluences between X and Y are built into Figure
1 and Equation 1. Most important is the as-
sumption that all causal influences are lagged;
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simultaneous causal influences between X2 and
F2 are not included. Also, assumptions of lin-
earity and additivity of causal influences are
built into this model.

The absence of a causal effect between vari-
ables is represented by a zero value of the rele-
vant model parameter. In particular, in
Equation 1 the absence of any direct causal
effects between X and F is represented by
/32 = Y2 = 0. (Definitions of the absence of any
causal effects between X and F will prove to be
importantin the examination of "spuriousness"
in CLC.) Also, a causal predominance of X over
F would be represented by a zero (or negligi-
ble) value of 72 and a large value of fa. A causal
predominance of F over X is represented in
the same manner.

Standardized versions of the structural
parameters in Equation 1 also may be used to
define causal effects. Standardized parameters
are denoted by an asterisk. Explicitly,

72
 = 72

ft* a l
Pi = Pi 1 — I)

= 7i

Similar representations of reciprocal causal
effects can be made in structural regression
models for data from longitudinal panel de-
signs that are far more complex than a 2W2V
design. For example, multiple indicators of
latent variables £ and t\ may be available at
each time of measurement. In the structural
regression model for these data, the role of fa
and 72 is unchanged; these parameters repre-
sent the lagged reciprocal causal influences be-
tween the latent variables £ and j;.

Continuous-Time Models

Another approach to modeling panel data is
to formulate equations for the rate of change

of variables over time (Coleman, 1968; Han-
nan & Tuma, 1979). A simple two-variable
model for rates of change that incorporates
reciprocal influences between X and F is

dX(f)

dY(t)
dl (2)

Figure 1. Structural regression model for 2W2V panel
data.

Equation 2 is a system of coupled differential
equations which stipulates that the rates of
change of X and F at any time depend linearly
on the levels of X and F. The parameters 62
and ca represent the cross-effects or couplings
between X and F. Note that Equation 2 is
deterministic; for my purposes this limitation
is not crucial.

Although rates of change are not directly
observable, the solution of the system of dif-
ferential equations in Equation 2 yields equa-
tions in terms of the observable variables of
the same form as in Equation 1. The param-
eters fa and 72 are monotone increasing func-
tions of b'2 and c2 and depend on the time be-
tween waves and the parameters of Equation 2
(Kaufman, 1976). Thus the representation of
reciprocal effects in the structural regression
model in Equation 1 is consistent with that of
the model for rates of change in Equation 2.
Also, instead of only corresponding to the ex-
perimental lag between waves, regression
models for panel data can be thought of as
reflecting a process in which causal influences
and resulting adjustments are continuous in
time (Coleman, 1968; Hannan & Tuma, 1979).

Multiple Time-Series Models

In econometrics the detection of reciprocal
causal effects from time-series data has at-
tracted considerable interest. The analysis by
Sims (1972) of the reciprocal causal influences
of mone}' stock and income is the best known
example of this work. Definitions of reciprocal
causal effects in multiple time-series data were
formulated by Granger (1969). Subsequent
work (Pierce, 1977; Pierce & Haugh, 1977)
has interpreted and extended these definitions.

The definitions of causality are based on
predictability criteria. Loosely speaking, one
time series, for example, X ( l ) , causes another
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time series Y(t), if present Y can be predicted
better using past values of X than by not using
past values of X, other relevant information
(including past values of F) being used in both
cases. These definitions have been translated
into explicit conditions on the structures and
parameters of multiple time-series models (see
Pierce & Haugh, 1977).

Definitions of causal effects in panel data
also can be formulated using the predictability
criteria. The longitudinal panel data can be
viewed as a collection of many short time series.
The conditions are particularly simple for
2W2V data. For example, the condition for X
causes Y for the 2W2V model in Figure 1 can
be stated in terms of linear prediction with no
simultaneous causation as a relation between
the population multiple correlations :

This inequality is satisfied when

Pv,(Xr y,) > 0 •

That condition is satisfied if and only if /32 ^ 0.
Also, the condition for Y causes X is that
72 T* 0. And the condition for feedback is that
both /32 and y2 are nonzero. Although much of
the sophistication of the time-series formula-
tion is lost when these definitions of causality
are adapted to longitudinal panel data, it is
useful to show that these definitions are con-
sistent with the other representations of causal
effects.

Method of Cross-Lagged Correlation

In this section the procedures and assump-
tions of CLC are described and discussed.
Procedures for both two-wave and multiwave
panel data are considered. This material pro-
vides the groundwork for the results in the
next two sections. The discussion in this section
is restricted to variables measured without
error; complications that result from fallible
measurement are not crucial in this analysis.

Procedures for Two-Wave Panels

Figure 2 is the diagram that accompanies
expositions of CLC. Figure 2 presents the pop-
ulation correlations among the variables in a
2W2V panel. The population cross-lagged cor-

Figure 2. Population correlations for a 2W2V panel.

relations are pxtYt and pylx.r The within-time-
period, between-variables correlations, pXly1

and pxtyt, are the synchronous correlations.
The between-time-periods correlations of the
same variable, pXlxt and pF,r2, are the stabilities
of the variables.

The attribution of causal predominance1 in
CLC is based on the difference between the
cross-lagged correlations, px^v^ — PY^X^ If the
data indicate that Pxlvi — Pv^x^ is positive, the
causal predominance is concluded to be that of
X causing Y. If the data indicate that PX^Y^
— PI^A'J is negative, the causal predominance
is concluded to be that of Y causing X (Camp-
bell, 1963). Usually, attributions of causal pre-
dominance are made only when the null hy-
pothesis of equal cross-lagged correlations
(Ho: pXlyt = py^xj is rejected.

CLC discards much information. A statis-
tically significant difference between the sample
cross-lagged correlations is given the same in-

1 In the literature on CLC, the recognition of both a
source and a direction of a predominant causal influence
has generated much discussion (Rozelle & Campbell,
1969; Yee & Gage, 1968). Source is the variable that is
causally predominant, and direction is whether the
causally predominant variable causes an increase or a
decrease in the other variable. In terms of the model in
Equation 1, source is related to the relative magnitudes
of /32 and 72, and direction is determined by the sign of
the parameter. Causal predominance in this article
refers to an identification of both source and direction.

2 Pelz and Andrews (1964) proposed that causal at-
tributions be based on the partial cross-lagged correla-
tions, rxpi-x-L an(l rytxrYr I do not consider this pro-
posal further for two reasons. First, this proposal has
been ignored in applications and technical development
of CLC. Second, and more important, the partial corre-
lation strategy fundamentally differs from CLC because
the partial correlation strategy is not in any way based
on the model in Figure 3 that is the basis for the use of
zero-order correlations. In fact the partial correlation
strategy is best thought of as an incomplete structural
regression strategy based on Figure 1 (see, also, Heise,
1970).
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terpretation regardless of the magnitude of the
difference and regardless of the magnitudes of
the individual correlations. Also, no distinction
is made between large and equal cross-lagged
correlations and small and equal cross-lagged
correlations.

Kenny (1975) interpreted the null hypothe-
sis of equal cross-lagged correlations as a null
hypothesis that the relationship of X and F is
a result of the common influence of an unmea-
sured third variable and not a result of direct
influences between X and F. Kenny termed
this a null hypothesis of spuriousness. Rejection
of this null hypothesis (under certain assump-
tions) leads to a conclusion of direct causal
effects between X and F. Although Kenny em-
phasized this test for spuriousness over an at-
tribution of causal predominance, all applica-
tions of CLC seek an attribution of causal
predominance.

Kenny (1975) posited a very specific model
for his null hypothesis of spuriousness, which
is depicted in Figure 3. This 2W2V model with
one evolving common factor (F) is also ana-
lyzed from the standpoint of path analysis by
Duncan (1972, especially pp. 63-74). Duncan
showed that this model is underidentified; that

is, only the parameter h can be estimated from
the 2W2V data.3

The strategy of investigating the tenability
of a null hypothesis of a spurious association
between X and F is not without merit. How-
ever, Kenny's (1975) model of spurious associ-
ation is just one of several models in which
direct causal influences between X and F are
absent. The term spuriousness is better con-
sidered as a generic term for the absence of
direct causal influences between X and F.

Many alternative models for 2W2V data
can be constructed that are true to this broad-
ened notion of spuriousness. Two examples are
the common factor model with lagged effects
considered in Duncan (1972, Figure 12) and a
restricted version of the 2W2V model in Figure
1 in which /32 = 0 and 72 = 0. As /32 and y2

represent the magnitudes of the lagged causal
effects between X and F, it follows from the
definition of causal effects that the absence of
direct causal effects between X and F be
represented by the model in Figure 1, with
& = 72 = 0.

Rarely is it recognized that the objectives of
CLC are modest and limited. In its most com-
plete form, CLC purports to distinguish only
between spuriousness and a causal predomi-
nance for one of the variables. Even if CLC were
valid for its stated objectives, it falls short of
providing an adequate description of causal
influence in panel data. The failure of CLC to
achieve even these limited objectives makes the
status of CLC as the primary analysis method
for panel data in education and psychology
very unfortunate.

Figure 3. Model for 2W2V panel data used to represent
spuriousness in CLC.

3 From examination of the models in Figures 1 and 3,
it might appear that the model in Figure 1 contains the
restriction that the autocorrelations among the residuals
in Figure 3 (denoted by the parameters s and t) are zero.
This is not the case, as nonzero values of these param-
eters are incorporated into the parameters /5i and 71.
That the parameters of the model in Figure 1 do reflect
nonzero values of s and / can he seen from the result that
the restriction s = I — 0 requires that /3m = /Sj-n-
Also, the model in Figure 3 does not require that u and
v in Equation 1 be uncorrelated.

The restrictions that /( (a correlation) not be greater
than one in magnitude requires that Pxtf<fY\Xv <• Px\f\'
Px.2Yr Kenny (1975) stated that a violation of this re-
striction in sample data is indicative of a causal effect.
Also, if J and (are both positive, then the model requires
that PxiV^Cv^x, < Pjrjjfjpy^j-
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Assumptions in CLC

Articles on CLC often contain complex non-
mathematical discussions of the assumptions
deemed necessary for the interpretation of the
difference between the cross-lagged correla-
tions. Taken together, these assumptions are
very restrictive. Not all expositions of CLC
include all assumptions, and most empirical
applications of CLC ignore the assumptions.

Kenny (1973, 1975) formulated the assump-
tions of CLC with regard to his model for
spuriousness (Figure 3). The major assumption
of CLC is stationarity, that is, that the causal
structures for X and Y do not change over-
time. For the parameters in Figure 3, station-
arity requires that a\ = »•> and b\ = &•>.
(Weaker assumptions, called proportional sta-
tionarity and quasi stationarity are also con-
sidered in Kenny, 1975.) Because the syn-
chronous correlations, pxly1 and pxty2, are equal
if aj)\ = aj)z, stationarity implies equality of
the synchronous correlations.4 Equality of the
synchronous correlations is a necessary but not
sufficient condition for stationarity.

The assumption of stationarity is far from
innocent. The assumption that the causal
parameters do not change over time (or, less
restrictively, that the synchronous correlations
do not change over time) is closely linked to an
assumption that the system (composed of the
relations between X and Y) is in equilibrium
(see Coleman, 1968). This assumption of
equilibrium is often invoked to justify the use
of cross-sectional data as a proxy for longitu-
dinal data. The analysis of longitudinal panel
data should not depend on a restrictive assump-
tion closely linked to cross-sectional research.

Restrictive assumptions are necessary in
CLC because the model in Figure 3 is under-
identified. Dependence on the stationarity
assumption appears to limit applications of
CLC. However, in many well-known applica-
tions, substantial violations of stationarity are
present (e.g., Clarke-Stewart, 1973; Eron,
Huesmann, Lefkowitz, & Walder, 1972).

Given stationarity, unequal cross-lagged
correlations are inconsistent with the model in
Figure 3. Consequently, in CLC unequal cross-
lagged correlations indicate rejection of spuri-
ousness. Because equal synchronous correla-
tions are not a sufficient condition for

stationarity, the cross-lagged correlations may
be unequal when the synchronous correlations
are equal and the representation of spurious-
ness in Figure 3 is valid/' Kenny had previously
noted problems with verifying stationarity in
two-wave data and had indicated ways
(Kenny, 1973) to verify stationarity in
multiwave data.

A second key assumption is synchronicity,
that the measures at each wave are obtained at
the same time. This assumption is implicit in
our description of the longitudinal panel data
and will not be considered fur ther .

Kenny (1975) introduced an assumption
termed homogeneous stability that is invoked to
help distinguish between the alternative hy-
potheses that X causes an increase in Y and
that Y causes a decrease in X (or vice versa)
once the null hypothesis of spuriousness has
been rejected. Homogeneous stability- is not
used to determine whether spuriousness should
be rejected. Nor is homogeneous stability used
to decide between X causes an increase in Y
and Y causes an increase in X. The assumption
is not stated explicitly in terms of parameters
in Figure 3, but Kenny did state that equal
stabilities for X and Y (measured without
error) are consistent with this assumption. In,
recent applications of CLC (Calsyn & Kenny,
1977; Crano, 1977; Crano & Mellon, 1978;
Humphreys & Stubbs, 1977), this assumption
has not been used or discussed.

Exlejision of CLC to Multiwave Panels

The extension of CLC to multiwave panel
data consists of comparisons of cross-lagged

* The restriction that the synchronous correlations be
equal has no special interpretation in terms of the
parameters of the model in Figure 1. The restriction in
terms of the standardized versions of the structural
parameters is

PX1Y1 =

5 From Figure 3
- 017* - 0272

= li(aibi —

Equality of the synchronous correlations requires that
a\bi = aj}-i. Substituting this into the difference be-
tween the cross-lagged correlations yields

PX,Y, — PY -Jf).
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correlations from all possible two-wave com-
binations (see Calsyn, 1976; Calsyn & Kenny,
1977; Crano, 1977). Multiple waves of data are
used to replicate 2W2V patterns. For example,
for three-wave, two-variable (3W2V) panel
data, three pairs of cross-lagged correlations
would be examined: cross-lagged correlations
between Waves 1 and 2, between Waves 2 and
3, and between Waves 1 and 3.

m
W

The analysis of T waves of data as I - I two-

wave pieces represents a short-sighted view of
the value of multiwave data. Many patterns
of causal influence cannot be detected from a
series of two-wave snapshots. Using multiple
waves to replicate two-wave patterns depends
on a static pattern of causal influence over
time. This strategy rules out investigation of
change over time in patterns of causal influ-
ence and is not an effective use of multiple
waves of data.

When T is large or when many indicators of
each variable are available, the number of
comparisons of cross-lagged correlations be-
comes large. (With px measures of £ and pY

measures of t\ at each of the T time points,

•G)pxpy { 9 1 comparisons of cross-lagged correla-

tions can be made.) The usual practice in CLC
analyses of such data (Calsyn, 1976; Crano,
1977) is to tally the statistically significant
differences between the cross-lagged correla-
tions in both directions; the causal winner is
the variable with the greater number of sig-
nificant differences in the appropriate direction.

Results for Two-Wave Panels

In this section I demonstrate that the differ-
ence between the cross-lagged correlations is
not a sound basis for causal inference. Neither
determinations of causal predominance nor
spuriousness are defensible. Complications re-
sulting from measurement error, specification
error, and multiple indicators are also discussed.
All results are presented in terms of population
parameters.

Difference Between the Cross-Lagged Correlations

The difference between the population cross-
lagged correlations can be written in terms of

the parameters of Equation 1 :

f AY
Px,yt - PrlXt = (1 - P.l.jO ^(-—

L. \ ^2/

~ -M + PX^PYiY, - PA-jA'j). (3)
xt/ j

- 72

The difference between the cross-lagged corre-
lations can also be expressed in terms of the
standardized versions of the structural
parameters :

iY^PYiYi ~ Pjr,Xj), (4)

+ Pxlrl(vl-fi). (5)

The difference between the cross-lagged corre-
lations does not have a direct correspondence
to measures of causal effects.

The expressions above are used to demon-
strate that the difference between the cross-
lagged correlations does not provide a sound
basis for a determination of spuriousness or
causal predominance, even when the assump-
tions of CLC are satisfied.6 Equal cross-lagged
correlations do not support a conclusion of
the absence of direct causal effects, and un-
equal cross-lagged correlations do not support
a conclusion of causal predominance. The ex-
amples and generalizations based on Equations
3, 4, and 5 almost always incorporate the as-
sumption that the structural parameters and
the correlations are nonnegative. This assump-
tion is not limiting, but in some cases negative
values would require changes in wording.

Equal cross-lagged correlations. In CLC,
equal cross-lagged correlations indicate a con-
clusion of a spurious (or nonexistent) pattern
of causal influence between X and Y. This
conclusion is unsound because equal cross-
lagged correlations are consistent with many
patterns of direct causal influence. Equal cross-

8 The assumption of stationarity can be partially
represented in Equations 3, 4, and 5 by incorporating
the restriction of equal synchronous correlations, using
the expression given in Footnote 4. Substitution of this
equality has no effect on the interpretations and on con-
clusions that are based on Equations 3, 4, and 5.
Consequently, this complication is not considered in
the text.
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(a) B* - .30 Y* = .30

.70

Y^ = . 40

B* - .30 Yj = .55

(e) a* = .3i

B* - .28

.50

Figure 4. Numerical examples of misleading cross-lagged correlations in 2W2V panels. (Standardized
structural parameters are listed above each of the diagrams that display the correlations.)

lagged correlations require only that

~ * ' -

0 ~ 72 = ftr.K.J - T ) .

In particular, equal cross-lagged correlations
are consistent with (a) large and equal causal
effects, (b) large and unequal causal effects,
and (c) the absence of causal effects between
X and F. These cases are considered below,
and numerical examples are displayed in
Figure 4.7

As can be seen from Equation 4, if fi*z and y*z

are large and equal and if the stabilities of X

and F are equal, the cross-lagged correlations
are equal. Panel a in Figure 4 is one of many
possible illustrations that a zero difference be-
tween the cross-lagged correlations is consistent
with nonnegligible and equal direct causal in-
fluences. Equal cross-lagged correlations are

7 In the numerical examples displayed in Figures 4
and S, stationarity is not grossly violated. In each of
these examples, the correlations were generated under
the assumption that <ruv = 0. A nonzero,value of a-uo
could have been specified in each of these examples that
would make the synchronous correlations identical;
however, it was felt that the slight discrepancies among
synchronous correlations did not justify the complica-
tion of an additional specification.
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also consistent with unequal causal effects, the
difference between the stabilities offsetting the
difference between fi\ and y%. Panel b in Figure
4 presents an example in which &\ is twice as
large as -yj anc^ in which the cross-lagged corre-
lations are equal. Equal cross-lagged correla-
tions are consistent with the absence of causal
effects—ft\ — y'z — 0—only when the stabilities
of X and Y are equal.

All of the difficulties with the interpretation
of equal cross-lagged correlations persist when
causal effects are defined in terms of unstan-
dardized structural parameters. Because the
difference between the cross-lagged correlations
increases as ox^xjay^v^ increases (all other
parameters constant), changes in variances
over time make equal cross-lagged correlations
consistent with an even wider variety of con-
figurations of unstandardized causal param-
eters than were indicated previously for
standardized parameters.

The evidence used in CLC to reach a deter-
mination of spuriousness is equal cross-lagged
correlations (and equal synchronous correla-
tions to satisfy stability). Because this evidence
is consistent with many patterns of direct
causal influence, the determination of spurious-
ness in CLC is unsound.

Unequal cross-lagged correlations. Unequal
cross-lagged correlations indicate a causal pre-
dominance in CLC. However, a nonzero differ-
ence between the cross-lagged correlations is no
more dependable than a zero difference for
determining the pattern of causal influence.
Unequal cross-lagged correlations are consis-
tent with (a) the absence of causal effects be-
tween the variables, (b) equal causal effects,
and (c) unequal causal effects. Moreover, the
predominant cause indicated by the unequal
cross-lagged correlations may be opposite to
that denned by the structural parameters; for
example, the cross-lagged correlations indicate
that X is causally predominant, when the re-
verse is true.

As before, the shortcomings of CLC are seen
from Equations 3, 4, and 5. First, in the absence
of causal effects (ft = 72 = 0), pXlvt — pvlxt

= PX^^PY^ — PJ^A-J). Unequal cross-lagged
correlations result whenever px^xt ^ pi^y,.
CLC will assign causal predominance to the
variable with the lower stability, even though
causal effects are not present,

Similarly, a causal predominance will be in-
dicated by CLC when $\ = y* ̂  0 and the
stabilities are unequal. Causal predominance is
attributed to the variable with the lower stabil-
ity because, as in the previously mentioned
expression, pxlYl—PYIX^ = PXIYI(PYIY^—PXIX^-
Panel c in Figure 4 presents a numerical
example in which /3g = y%, and the cross-
lagged correlations indicate a causal predomi-
nance for X, the variable with the lower
stability.

In addition to indicating a causal predomi-
nance when there is none, CLC may indicate a
causal predominance opposite to that indicated
by the structural parameters. Whenever px,y2

— pytxt and /32 — 7 2 (or 0J — -yj) differ in sign,
the direction of causal predominance indicated
by the cross-lagged correlations is antipodal to
that determined by the structural parameters,
fn Panels d and e in Figure 4, the stronger
causal effect, defined by the standardized
structural parameters, is from Y to X. How-
ever, in each example the cross-lagged correla-
tions indicate that the predominant causal in-
fluence is from X to Y. In each example CLC
picks the wrong causal winner,

When causal effects are expressed in terms
of the unstandardized structural parameters,
changes in variances over time further compli-
cate the interpretation of unequal cross-lagged
correlations. As noted previously, the difference
between the cross-lagged correlations increases
as ax^xJffY^ffv^ increases. As a result, CLC
(other parameters constant) favors the attribu-
tion of causal predominance to the variable
with increasing variance over time. One way of
highlighting the role of changing variances over
time is to rewrite Equation 3 as

PXfY, — PYtX, = —
Yn

For example a relatively large <r,v2 tends to
make PX,YS — Pvixi positive, thus favoring the
attribution of causal predominance to X,

Measurement Error

In the preceding discussion X and Y were
assumed to be measured without error. A num-
ber of techniques, both standard psychometric
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methods and special methods peculiar to CLC,
have been used in CLC analyses to deal with
measurement error. It is not vital to consider
these correction techniques explicitly because
any scheme for disattenuation can at best re-
produce a situation with perfect measurement.
But CLC is unsound even when measurement
is perfect, and better performance cannot be
expected when measurement error is present.
Equations 3, 4, and 5 are valid both for fallible
and for perfectly measured variables.

The presence of measurement error is cited
in discussions of CLC as invalidating alterna-
tive regression-based analyses (see Kenny,
197S). If this claim were sound, it would justify
some despair but would not justify the use of
CLC. The argument in support of CLC is that
partial regression slopes are more severely af-
fected by measurement error than are zero-
order correlations. With only one fallible mea-
sure of each variable at each time point, it is
not possible in general to obtain acceptable
estimates of the parameters of a regression
model for the panel data. However, additional
measures of each variable can be used to con-
sistently estimate the regression parameters.
The problem of measurement error can be
viewed as a problem of inadequate research
design; a research design that incorporates
multiple indicators of the underlying variables
is not as easily invalidated by fallible measure-
ment.

Specification Error

Sometimes claims are made that CLC is not
affected by omitted causal variables or by
other forms of specification error, whereas re-
gression analyses are destroyed by specification
error. A fervent argument of this type was
made by Humphreys and Stubbs (1977), who
asserted that

the comparison of correlations among the same set of
measures obtained at two or more intervals of time
(cross-lagged correlations) either avoids completely or
minimizes the difficulties involved in the interpretation
of regression weights, (p. 262)

The claim is specious. CLC is not immune to
specification error.

The effects of specification error on CLC are
opaque because a zero-order correlation does
not depend on additional variables, whether
they be measured or omitted. The problems

arise in the interpretation of the zero-order
correlations in the determination of causal
effects, specifically from the effects of specifica-
tion error on the definitions of causal effects
and on the model underlying CLC. When the
model in Equation 1 is misspecified because of
the omission of important causal variables, the
structural parameters in Equation 1 are not
valid representations of the causal influences.
The cross-lagged correlations are functions of
these structural parameters, and thus their
interpretation is also affected. For example,
when Ay = P i - i - ,

The causal interpretation of the zero-order
correlations is based on specific assumptions
about causal structures. The model (Figure 3)
underlying CLC includes assumptions about
unmeasured variables that are unlikely to be
satisfied when important causal variables are
omitted. For example, the requirements that
U'2 and F2 be uncorrelated with each other and
that £/i and V\ be similarly uncorrelated are
susceptible to violations resulting from speci-
fication error. Figure 15 in Duncan (1972) con-
tains some forms of specification errors for
Figure 3.

Multiple Indicators

A CLC analysis of panel data with multiple
indicators of each variable consists of the com-
parison of all possible 2W2V cross-lagged cor-
relations. In a two-wave panel with px mea-
sures of the latent variable £ ( and with pv

measures of the latent variable r/, at each time,
pxpv differences between cross-lagged correla-
tions are computed. Multiple indicators are
considered to be an opportunity for replications
across different operationalizations of the same
construct (Kenny, 1975, p. 894).

The pxpv differences between the cross-
lagged correlations obtained from a 2W2V
design with multiple indicators can be written
as

i = \,...,px\ j = 1 , . - . , PY. (6)
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The latent variables £ and •>; are related by the
structural equations,

of Equation 7, the differences between
cross-lagged correlations are

the

£•2 = /3o + /

172 = To +

+ u,

+ "•

The observed indicators are related to the la-
tent variables by the measurement model,

Xu = &nt;t -f- fit,

Yjt = Xj-,7j, + Vjt

*= 1,..., #*; j = l , . - . , ^ ; 1=1,2.

Equation 6 shows the additional problems
with CLC resulting from the use of multiple
indicators for replication. The relations in
Equations 3, 4, and 5 can be thought of as re-
lations for the latent variables £ and r\. Even
if measures of £ and -q were available, the dif-
ference between their cross-lagged correlations
is not a sound basis for causal inference.
Equation 6 shows that these shortcomings are
likely to be compounded by the CLC strategy
for using multiple indicators. The difference
between cross-lagged correlations of the multi-
ple indicators depends on the specific relations
(the loadings 5 and X) of each indicator to the
latent variable it represents. This dependence
is likely to produce inconsistency and con-
fusion, not replication,

Results for Multiwave Panels

The analysis of CLC for multiwave data is
based on a 3W2Vpanel design. The representa-
tion of causal effects for the 3W2V design is a
simple extension of Equation 1 (intercepts
omitted) :

X* =

F2 =

X, =

F3 = j84Xi + 73F5 + ft,Xi + TsFi + »,. (7)

In this model, causal effects between X and F
may span two waves; both between-variables
and within-variable effects are so represented
in Equation 7.

Three separate comparisons of cross-lagged
correlations are made in CLC for the 3W2V
data : comparisons between Waves 1 and 2, be-
tween Waves 2 and 3, and between Waves 1
and 3. In terms of the standardized parameters

~ PFsx3 =

- 72 + Pxjfyl

- 7* + PxtYt(yl

. (8)

CLC analyses for 2W2V data were shown not
to be a sound basis for causal inference. The
collection of 2W2V analyses produced by CLC
with multiwave data is no more dependable as
a basis for causal inference than a single 2W2V
analysis. In fact, the way CLC uses multiwave
data is likely to increase the difficulties; each
two-wave snapshot does not yield dependable
results, and taken together the two-wave analy-
ses will often be contradictory and misleading.

Equation 8 indicates that the differences be-
tween the cross-lagged correlations may be in-
consistent in causal attribution, even when
causal influences are pronounced and consistent
across waves. Figure 5 displays one of many
possible patterns of inconsistency in the cross-
lagged correlations. In Figure 5 the stronger
causal effect, as defined by the standardized
structural parameters, is from Y to X consis-
tently across the three waves. The cross-lagged
correlations do not indicate this causal pattern;
Waves 1 and 2 indicate a causal predominance
for X; Waves 2 and 3 indicate a causal predomi-
nance for Y, and Waves 1 and 3 indicate
spuriousness.

Unfortunately, inconsistencies in the cross-
lagged correlations over waves generate clever
substantive interpretations. For example,
Clarke-Stewart (1973) conducted a CLC analy-
sis on the relationship between maternal at-
tention and infant attachment using three
waves of data. Waves 1 and 2 indicated a causal
predominance for maternal attention, and
Waves 2 and 3 indicated a causal predomi-
nance for infant attachment (Wave 1-Wave 3
comparison not reported). Clarke-Stewart sug-
gested that "as mother and child search for
harmonious, balanced interaction over the
course of development, first one then the other
assumes the 'causal role' " (p. 91).
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3* = .28 |3* = .31 8* = .25 0* = .10 8* = .05 g* = .06

.68 Y* = .40 Y* = .65 y-* = .40 y* = . 10 y* = .10/ j 4 j b

vr-55

.500 .543

.550

.851 .829

.504

.550

.741

p - p = .130
X1Y2 Y1X2

PX Y - PY XX2Y3 X2 3
Pv Y - PY v = -003

X1Y3 Y1X3

Figure 5. A numerical example of inconsistent cross-lagged correlations in a 3W2V panel. (Standardized
structural parameters are listed above the diagrams that display the correlations.)

Statistical Inference in CLC

In the preceding sections relations among
population parameters were used to demon-
strate the failure of CLC. In this section addi-
tional problems with the application and inter-
pretation of statistical inference procedures in
CLC are noted.

Rejection of the null hypothesis of equal
cross-lagged correlations (H0: px^ = PivO
often is interpreted with little regard for the
power of the statistical test. Users of CLC are
advised to use large samples; Kenny (1975)
advises that "cross-lagged analysis is a low-

power test" (p. 887) and that even with moder-
ate sample sizes (defined as 75 to 300), statis-
tically significant differences are difficult to
obtain. With large enough samples, trivial de-
viations from the null hypothesis lead to re-
jection. For example, Crano, Kenny, and
Campbell (1972) found significant differences
between cross-lagged correlations of .65 and .67
because the sample size was 5,495. Other
authors ignore sampling variation and with
small sample sizes interpret differences between
the sample cross-lagged correlations as if these
sample estimates were population values. The
use of interval estimates for px^j ~ pr^ would
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be an improvement over current practice in
CLC; the construction of the interval estimate
can be found in Olkin (1966).

Also, significant differences between the
cross-lagged correlations are interpreted with-
out regard for the assumptions of CLC. Rarely
is any assessment of stationarity made in ap-
plications of CLC. In many sets of longitudinal
data, the difference between the synchronous
correlations is about as large as the difference
between the cross-lagged correlations (e.g.,
Humphreys & Stubbs, 1977, Table 4; Kenny,
1975, Tables 3 and 5). In a few applications a
test of the null hypothesis—Hoipj^y, = P,v2r2—
is performed. However, nonrejection does not
prove the null hypothesis true, and in addition
this null hypothesis is only a necessary condi-
tion for stationarit}'. The statistical test of
equal cross-lagged correlations ignores the as-
sumptions and the use of a preliminary test for
stationarity. The complete null hypothesis
should be that the cross-lagged correlations are
equal, conditional on stationarity. That is, the
conditional null hypothesis of interest is
Ho: PXIYI = PY^Z \ PX.Y, = PXjiY No exact statis-
tical test is available for this conditional null
hypothesis, although methods such as covari-
ance structure analysis (Joreskog & So'rbom,
1979) could be used to form a large-sample,
normal-theory test. Of course, no improvement
in the use of statistical inference procedures
can offset the basic deficiencies of CLC.

Summary and Discussion

No justification was found for the use of
CLC. In CLC both determinations of spurious-
ness and attributions of causal predominance
are unsound. The results for 2W2V panels dem-
onstrate that when reciprocal causal effects are
absent, the difference between the cross-lagged
correlations may be either small or large, and
when reciprocal causal effects are present, the
difference between the cross-lagged correlations
may be either small or large. Also, the practice
in CLC of reducing the analysis of data with
multiple waves and multiple measures to a col-
lection of 2W2V analyses produces additional
problems. CLC is best forgotten.

It should be stressed that this article is not
devoted to identifying perverse situations in
which CLC might break down. Rather, a

straightforward and explicit formulation of
causal effects in panel data showed that CLC is
not a sound basis for causal inference over a
wide range of plausible situations. Possibly,
CLC could be patched up, primarily through
additional restrictive assumptions, in response
to the deficiencies demonstrated in this article.
This article is not intended to stimulate such
activities. CLC should be set aside as a dead
end.

In some sense this article is a flight of fan-
tasy. The fantasy is the notion of a closed two-
variable causal system on which the exposition
and results are based. This simple formulation
serves well for investigating the worth of CLC.
Also, almost all applications and technical de-
velopment of CLC have been limited to two-
variable causal systems. CLC fails even in this
idealized situation, and no grounds for optimism
exist for better performance in more complex
causal systems.

In his articles on longitudinal panel data,
Duncan (1969, 1972, 1975) stressed that the
analysis of panel data cannot be reduced to a
mechanical procedure that yields trustworthy
inferences about causal structures. A minimal
requirement for success is the careful formula-
tion of explicit (and often specialized) models
for the substantive processes. An intent of this
article is to emphasize this message. Trying to
answer a causal question from a set of (longi-
tudinal) data is asking a lot from those data.
Minimal requirements are that the right vari-
ables be measured well. Often the state of theo-
retical and empirical knowledge in a substan-
tive area is not sufficiently advanced that the
relevant variables have been identified or that
sufficient measurement techniques have been
developed.

Alternative methods for analyzing panel
data were not endorsed or discussed in detail.
This omission reflects the fact that methods for
detecting patterns of causal influence from
panel data are far from fully developed. The
contribution of this article is to demonstrate
that CLC certainly is not the method to rel}'
on for the analysis of panel data. It is hoped
that this article will direct efforts away from
further development and application of CLC
and toward the development and evaluation of
productive approaches for the analysis of
panel data.
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